Quality, Consistency \& Support

Yeast Count \& Viability

Double Thoma Haemocytometer

- Using the 1 ml Pasteur pipette, measure out 1 ml of the beer sample into the Sterilin bottle
- Using another Pasteur pipette measure out 1 ml of the Methylene Blue solution and mix with the 1 ml of beer sample
- Shake for 20 seconds
- Take the haemocytometer out of its case and breathe on the top surface to create condensation
- Firmly press the cover slip down onto the condensation to ensure a good seal is made
- Using the original pipette (the one used for transferring the beer), transfer some of the now mixed beer and MB solution onto the haemocytometer slide
- Just touch the edge of the Pasteur pipette against the cover slip
- Allow the fluid to seep under the cover slip by capillary action
- Place the slide under the microscope and ensure that the correct lens is chosen (x40)
- Once focused you should be able to find the grid shown:

Figure 1

- Now count the cells in each box in Figure 1 as shown, labelled $1-10$ using the following photo as a guide:

Figure 2

- This photo represents one of the smaller boxes labelled 1 - 10 (Figure 1)
- Count the entire number of cells in this 4×4 grid
- Only count cells that are completely inside the grid
- For cells that are overlapping outer grid lines only count cells that are 50% + inside the grid
- Ignore the fluffy lumps of protein
- Once all cells are counted then count the number of 'non viable' cells which are blue from soaking up the MB dye
- For total count and viability use the working out below:

Do not count
Non viable cell

Ignore Protein

Total Count	- 62	Total \# of cells counted (Example)
	- x 2	Dilution factor from methylene blue
	- Equation:	(Number of cells $/ 0.04$) $\times 1000=$ Total Number of cells per ml
	IE:	$(124 / 0.04) \times 1000=3,100,000=3.10 \times 106$ per ml Total Cells
Non Viable Cells	- 6	Total \# of cells counted that are blue (Example)
	- x 2	Dilution factor from methylene blue
	- Equation:	(Number of cells $/ 0.04$) $\times 1000=$ Total Number of cells per ml
	IE:	$(12 / 0.04) \times 1000=300,000=0.3 \times 106$ per ml Total Cells
Viability (\%)	$(0.3 / 3.10) \times 100$	9.67 \% Non Viable Cells
	100-9.67	90.33 \% Total Viability

Murphy \& Sox

Quality, Consistency \& Support

