TECHNICAL INFORMATION SHEET: HYDROCHLORIC ACID 30\%

PRODUCT NAME:
 Hydrochloric Acid
 PRODUCT CODE:

 HYDA3OCOMMODITY CODE: 28061000

PACKAGING:

25 and 1150 KG

Description

Hydrochloric Acid 30% is a ready for use food grade acid used to reduce alkalinity and to increase chloride ions in brewing liquor treatment..

Contains E507

Benefits

- Reduces the alkalinity levels of brewing liquor
- Gives optimum pH levels throughout the whole brewing process
- Stimulates maximum enzyme activity during mashing .
- Improves extract yield and fermentability
- Improves wort run off, clarity and stability
- Adds desirable chloride ions
- Reduces extraction of undesirable compounds that cause astringent off flavours

TECHNICAL SUPPORT

tel: +44 (0) 1159785494 | e: techsupport@murphyandson.co.uk

REGULATORY COMPLIANCE INFORMATION

Refer to the Product Specification Sheet or contact us on
tel: +44 (0) 1159785494 | e: compliance@murphyandson.co.uk
HEALTH \& SAFETY INFORMATION
Refer to the Safety Data Sheet (SDS)

Quality, Consistency \& Support

	Bitter	Strong Bitter	Lager $\left(65^{\circ} \mathrm{C}\right)$	Porter	Mild	Wheat	Stout
Calcium	$180-220$	$200-220$	$120-140$	$130-160$	$120-140$	180	$120-140$
Alkalinity	$30-50$	$30-50$	$30-50$	100	100	35	150
Chloride	$150-300$	$200-300$	Low	$200-300$	300	250	300
Sulphate	$250-400$	$300-400$	Low	$200-300$	150	220	100

TABLE 1. TYPICAL LEVELS OF IONS IN BREWING LIQUOR USED TO PRODUCE DIFFERENT TYPES OF BEER (ALL FIGURES ARE IN MILLIGRAMS PER LITRE COMMONLY KNOWN AS PPM)

Principle

The objective of liquor treatment is to convert your water supply into acceptable brewing liquor. Treating your brewing liquor is vitally important. When applied correctly all the steps throughout the brewing process will be at the optimum pH . If it is applied incorrectly you will get poor extract and beer that is difficult to clarify.

Alkalinity

Alkalinity is mainly caused by calcium carbonate and bicarbonate. The alkalinity of your liquor plays a very important role in pH control. It causes high pH values throughout the brewing process. Hydrogen ions are removed from solution, thus wort pH remains high which results in low extract yield; presence of undesirable protein components; worts and beers prone to infection; increased extraction of silicates, polyphenols and tannins during sparge and harsh "after tastes" in the finished beer.

pH

The pH of the liquor will have little effect on the pH of the wort and beer. Alkalinity and calcium are more important in pH control. Once you have established correct levels of these ions it is advisable to follow the guidelines of typical pH measurements in the brewing process shown below.

Raw Liquor	$\mathrm{pH} 6.0-8.0$
Treated Liquor	$\mathrm{pH} 6.0-8.0$
Mash	$\mathrm{pH} 5.2-5.5$
1st Runnings	$\mathrm{pH} 4.8-5.2$
Last Runnings	$\mathrm{pH} 5.4-5.6$
Wort in Copper	$\mathrm{pH} 5.1-5.4$
Wort after boil	$\mathrm{pH} 4.9-5.3$
Beer after fermentation	$\mathrm{pH} 3.7-4.2$

TABLE 2. TYPICAL pH MEASUREMENTS THROUGHOUT THE BREWING PROCESS

Murphy \& Son Limited,	Tel:	(+44) 1159785494	
Alpine Street, Old Basford,	Fax:	(+44) 1159244654	
Nottingham NG6 0HQ	Email: info@murphyandson.co.uk	Registered in England No. 106442	
United Kingdom	Web:	www.murphyandson.co.uk	Vat No. 196878288

Quality, Consistency \& Support

Application

Hydrochloric Acid 30\% can be added to either the cold or hot liquor tank and should be thoroughly mixed. Time should be allowed to release the carbon dioxide produced by the neutralisation of excess carbonate. Please take into account any residual treated liquor when topping up your tank as this will affect alkalinity levels. Addition of hydrochloric acid 30% to the cold liquor tank has the added benefit of preventing scale build up on the heating elements.

Rates of Use

Addition rates for Hydrochloric Acid 30\% are dependant on the levels of alkalinity and other important ions (especially chloride ions) present in your untreated liquor. Raw liquor can have an alkalinity of up to $300 \mathrm{mg} / \mathrm{litre}$. Brewers need to reduce their alkalinity down to a range of 30-100 ppm (refer to table 1) depending on which beer styles they wish to produce. In some cases raw liquor can already be in that range so no acid treatment is required.

Levels of the relevant ions present in your liquor can be obtained from your Local Water Authority or you can send in 50 ml of your raw liquor to Murphy's laboratory for a full analysis and suggested treatment rates. Please note, Local Authority reports can provide results that are not up to date and may affect your calculations for ideal dosage rates. It is advisable to check the analysis of your water at least once a year, or on a more regular basis if the supply changes.

Once you have obtained your analysis of your raw liquor you can then calculate your dosage rates by selecting which beer type you wish to brew and refer to Table 1. This will help you determine how many ions to add or reduce.

5 ml per hl of Hydrochloric Acid 30\% reduces alkalinity by 23.6 ppm and increases chloride by 16.5 ppm .

Quality, Consistency \& Support

Storage and Shelf life

- Store in cool conditions away from direct sunlight
- Keep in original container
- Keep containers sealed when not in use
- Storage temperature is $10^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}$
- Precipitation may occur at low temperatures
- The shelf life at the recommended storage temperature is at least one year from the date of manufacture

PRODUCT	Hydrochloric Acid 30\%	PRODUCT CODE	HYDA30
ISSUE No.	1	DATE	$12 / 02 / / 21$
WRITTEN BY	I Kenny	AUTHORISED BY	RJ Haywood

